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1. Introduction

Ten years ago, it was noticed [1, 2], using the projective-superspace techniques [3], that

the general four-dimensional N = 1 supersymmetric nonlinear sigma-model [4]

S[Φ, Φ̄] =

∫

d4xd4θ K(ΦI , Φ̄J̄) , (1.1)

with K the Kähler potential of a Kähler manifold M, admits an off-shell N = 2 extension

formulated in N = 1 superspace as follows:

S[Υ, Ῠ] =
1

2πi

∮

dζ

ζ

∫

d4xd4θ K
(

ΥI(ζ), ῨJ̄(ζ)
)

. (1.2)

Here ζ ∈ C\0 is an auxiliary complex variable, and the dynamical variables Υ(ζ) and Ῠ(ζ)

comprise an infinite set of ordinary N = 1 superfields:

Υ(ζ) =

∞
∑

n=0

Υnζn = Φ + Σ ζ + O(ζ2) , Ῠ(ζ) =

∞
∑

n=0

Ῡn(−ζ)−n , (1.3)

with Φ chiral, Σ complex linear,

D̄.

α
Φ = 0 , D̄2Σ = 0 , (1.4)

and the remaining component, Υ2,Υ3, . . . , being unconstrained complex superfields.1 The

latter enter the action without derivatives, and therefore they form an infinite set of auxil-

iary superfields. As pointed out in [1], the N = 2 supersymetric sigma-model (1.2) inherits

all the geometric features of its N = 1 predecessor (1.1), that is properly realised Kähler

symmetry and invariance under holomorphic reparametrizations of the Kähler manifold.

1In the terminology of [5], the superfields Υ(ζ) and Ῠ(ζ) realize a polar hypermultiplet. The most

general N = 2 supersymmetric sigma-model couplings of polar hypermultiplets [3] are obtained from (1.2)

by allowing K to depend explicitly on ζ, K
`

Υ, Ῠ) → K
`

Υ, Ῠ, ζ
´

. A geometric interpretation of such

generalized couplings has recently been discussed in [6].
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The latter property implies that the variables (ΦI ,ΣJ) parametrize the tangent bundle

TM of the Kähler manifold M [1].

The auxiliary superfields Υ2,Υ3, . . . can in principle be integrated out, at least in

perturbation theory, and then the action (1.2) turns into [2]

Stb[Φ,Σ] =

∫

d4xd4θ
{

K
(

Φ, Φ̄
)

+ L
(

Φ, Φ̄,Σ, Σ̄
)

}

, (1.5)

where the second term in the Lagrangan looks like

L =

∞
∑

n=1

L(n) , L(n) = LI1···InJ̄1···J̄n

(

Φ, Φ̄
)

ΣI1 . . . ΣInΣ̄J̄1 . . . Σ̄J̄n . (1.6)

Here LIJ̄ = −gIJ̄

(

Φ, Φ̄
)

, while the tensors LI1···InJ̄1···J̄n
for n > 1 are functions of the

Riemann curvature RIJ̄KL̄

(

Φ, Φ̄
)

and its covariant derivatives.

The theory with action (1.5) possesses a dual formulation. It can be obtained by

considering the first-order action

S =

∫

d4xd4θ
{

K
(

Φ, Φ̄
)

+ L
(

Φ, Φ̄,Σ, Σ̄
)

+ ΨI ΣI + Ψ̄ĪΣ̄
Ī
}

, (1.7)

where the tangent vector ΣI is now complex unconstrained, while the one-form ΨI is chiral,

D̄.

αΨI = 0. Integrating out Σ’s and their conjugates gives

Sctb[Φ,Ψ] =

∫

d4xd4θ
{

K
(

Φ, Φ̄
)

+ H
(

Φ, Φ̄,Ψ, Ψ̄
)

}

, (1.8)

where the second term in the Lagrangian is

H =

∞
∑

n=1

H(n) , H(n) = HI1···InJ̄1···J̄n
(

Φ, Φ̄
)

ΨI1 . . . ΨIn
Ψ̄J̄1

. . . Ψ̄J̄n
, (1.9)

with HIJ̄ = gIJ̄
(

Φ, Φ̄
)

. The variables (ΦI ,ΨJ) parametrize the cotangent bundle T ∗M of

the Kähler manifold M [2]. Since the theory with action (1.8) is N = 2 supersymmetric and

realized in terms of chiral superfields, the Lagrangian in (1.8) constitutes the hyperkähler

potential for (in general, an open domain of the zero section of) T ∗M, in accordance

with [7]. If M is a compact Hermitian symmetric space, then the hyperkähler structure

turns out to be globally defined on T ∗M.

The problem of explicit computation of L
(

Φ, Φ̄,Σ, Σ̄
)

and H
(

Φ, Φ̄,Ψ, Ψ̄
)

from the off-

shell sigma-model (1.2) was addressed in a series of papers [2, 8 – 11] for the case when

M is a Hermitian symmetric space. The method2 used in [2, 8 – 10] essentially exploited

the property of such a manifold M to be a homogeneous space with respect to an ap-

propriate Lie group of holomorphic isometries. Being perfectly viable, such a setting has

2The method was introduced in [2] and illustrated on the example of M = CP 1. The case of CP n

was worked out in [8, 9]. The classical compact symmetric spaces U(n + m)/U(n) × U(m), SO(2n)/U(n),

SP (n)/U(n) and SO(n+2)/SO(n)×SO(2), as well as their non-compact versions, were worked out in [10].

The tangent-bundle formulation for SO(n + 2)/SO(n) × SO(2) was given for the first time in [9].

– 2 –
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a minor disadvantage in the sense that it requires a separate consideration for different

Hermitian symmetric spaces, on case by case basis. In particular, this method becomes

somewhat cumbersome in the case of exceptional symmetric spaces including the compact

ones E6/SO(10) × U(1) and E7/E6 × U(1). To address the latter spaces, the conceptual

set-up was changed in ref. [11], which built on the property of any Hermitian symmetric

spaces that its curvature tensor is covariantly constant,

∇LRI1J̄1I2J̄2
= ∇̄L̄RI1J̄1I2J̄2

= 0 . (1.10)

In conjunction with supersymmetry considerations, this idea allowed the authors of [11] to

derive the following closed form expression for the tangent-bundle Lagrangian:

L
(

Φ, Φ̄,Σ, Σ̄
)

= −gIJ̄ Σ̄J̄ eRΣ,Σ̄ − 1

RΣ,Σ̄

ΣI , RΣ,Σ̄ = −1

2
ΣKΣ̄L̄ RKL̄I

J ΣI ∂

∂ΣJ
. (1.11)

Using this representation, the case of E6/SO(10)×U(1) was worked out in [11] for the first

time.3 However, no universal closed form expression for H
(

Φ, Φ̄,Ψ, Ψ̄
)

was found in [11].

One of the aims of the present work is to fill this gap.

This paper is organized as follows. In section 2, we derive an alternative closed form

expression for L
(

Φ, Φ̄,Σ, Σ̄
)

which differs from (1.11). The specific feature of this new

representation is that the curvature tensor appears in it as a matrix, unlike the differential

operator in eq. (1.11). In section 3, we derive H
(

Φ, Φ̄,Ψ, Ψ̄
)

in a closed form. Finally, the

appendix is devoted to deriving a closed form expression for the Kähler potential of an

arbitrary Hermitian symmetric space in so-called Kähler normal coordinates (or Bochner’s

canonical coordinates) [13, 14]. In the main body of the paper, the Kähler manifold M is

only assumed to obey eq. (1.10).

A few words are in order regarding the content of the appendix. Recently, an in-

timate connection was pointed out in ref. [12] between the tangent-bundle Lagrangian

L
(

Φ, Φ̄,Σ, Σ̄
)

in (1.5) and the Kähler potential K(φ, φ̄) for M given in Kähler normal

coordinates φ with origin at Φ. In the symmetric case, eq. (1.10), this correspondence is

as follows:

L
(

Σ, Σ̄
)

= K(φ → −Σ , φ̄ → Σ̄) . (1.12)

The derivation of eq. (1.11) in [11], or the equivalent representation (2.6) below, are based

on supersymmetry consideration. Due to (1.12), there should exist a purely geometric way

of deriving analogues of the representations (1.11) and (2.6) for K(φ, φ̄). It is presented in

the appendix.

2. Tangent-bundle formulation

The Lagrangian L
(

Φ, Φ̄,Σ, Σ̄
)

obeys the first-order linear differential equation [11]

1

2
ΣKΣL RKJ̄L

I LI + LJ̄ + gIJ̄ ΣI = 0 , LI :=
∂L
∂ΣI

(2.1)

3The tangent-bundle formulation for E7/E6 × U(1) was sketched in [12].

– 3 –
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and its conjugate. As demonstrated in [11], this equation expresses the fact that the the-

ory (1.5) is N = 2 supersymmetric. It can be shown that this equation is identically satis-

fied by the function (1.11). A different representation for this solution is provided below.

It proves robust to rewrite (2.1) in a matrix form. For this purpose, we introduce the

following matrices:

RΣ,Σ̄ :=

(

0 (RΣ)I J̄

(RΣ̄)Ī J 0

)

, (RΣ)I J̄ :=
1

2
RK

I
LJ̄ ΣKΣL , (RΣ̄)Ī J := (RΣ)I J̄ (2.2)

and

g :=

(

0 gIJ̄

gĪJ 0

)

≡
(

0 ĝ

ǧ 0

)

. (2.3)

Then eq. (2.1) is equivalent to
(

LI

LĪ

)

= −g
(

l1 + RΣ,Σ̄

)−1
(

ΣI

ΣĪ

)

. (2.4)

This relation actually allows one to determine L by taking into account the identities

ΣILI = Σ̄ĪLĪ =

∞
∑

n=1

nL(n) . (2.5)

One then obtains

L
(

Φ, Φ̄,Σ, Σ̄
)

= −1

2
ΣTg

ln
(

l1 + RΣ,Σ̄

)

RΣ,Σ̄

Σ , Σ :=

(

ΣI

Σ̄Ī

)

. (2.6)

It also follows from (2.4) that the following composites

F (2k+2) := ΣTĝ(RΣ̄RΣ)kRΣ̄Σ = Σ†ǧ(RΣRΣ̄)kRΣΣ̄ , k = 0, 1, 2, . . .

F (2k+1) := ΣTĝ(RΣ̄RΣ)kΣ̄ = Σ†ǧ(RΣRΣ̄)kΣ , k = 0, 1, 2, . . . (2.7)

which appear in the Taylor expansion of L
(

Φ, Φ̄,Σ, Σ̄
)

, have the properties

F
(2k+2)
I = (2k + 2)ĝ(RΣ̄RΣ)kRΣ̄Σ , F

(2k+1)
I = (2k + 1)ĝ(RΣ̄RΣ)kΣ̄ . (2.8)

Eq. (2.6) constitutes our new closed form expression for L, compare with (1.11).

In [11], it was conjectured that L
(

Φ, Φ̄,Σ, Σ̄
)

can be represented in the form

L
(

Φ, Φ̄,Σ, Σ̄
)

= −Σ†ĝ
ln
(

l1 + RΣ,Σ̄

)

RΣ,Σ̄

Σ , (RΣ,Σ̄)IJ :=
1

2
RJ

I
KL̄ΣKΣ̄L̄ (2.9)

which differs from (2.6). The validity of this representation was checked in [11] for the

followings two choices of M: (i) CPn; and (ii) SO(n + 2)/SO(n) × SO(2). Unlike the

representation (2.6), we still do not have a proof that (2.9) holds in general (however, see

comments at the end of the next section).

Using the correspondence (1.12) and Kähler normal coordinate considerations (see the

appendix), one can derive an alternative second-order differential equation enjoyed by L:

LIJ =
1

2
RI

K
J

L LKLL . (2.10)

– 4 –
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3. Cotangent-bundle formulation

The “Hamiltonian” H(Φ, Φ̄,Ψ, Ψ̄) obeys the nonlinear differential equation [11]

HI gIJ̄ − 1

2
HKHL RKJ̄L

I ΨI = Ψ̄J̄ , HI =
∂H
∂ΨI

. (3.1)

This equation immediately follows from (2.1) if one makes use of the standard properties

of the Legendre transformation. Alternatively, eq. (3.1) is equivalent to the condition

that the cotangent-bundle action (1.8) is N = 2 supersymmetric [11]. The hidden SUSY

transformation, which is not manifest in the N = 1 superspace formulation, is [11]:

δΦI =
1

2
D̄2
{

εθHI
(

Φ, Φ̄,Ψ, Ψ̄
)}

,

δΨI = −1

2
D̄2
{

εθ KI

(

Φ, Φ̄)
}

+
1

2
D̄2
{

εθ ΓK
IJ

(

Φ, Φ̄
)

HJ
(

Φ, Φ̄,Ψ, Ψ̄
)

}

ΨK , (3.2)

with ΓK
IJ the Christoffel symbols for the Kähler metric. The nonlinearity of (3.1) makes

it more difficult to solve than (2.1). Below we provide the solution to eq. (3.1).

Equation (3.1) implies

ΨIHI − HKHL (RΨ)KL = gIJ̄ΨIΨ̄J̄ , (RΨ)KL :=
1

2
RK

I
L

J ΨIΨJ . (3.3)

Due to the identities

ΨIHI = Ψ̄ĪHĪ =
∞
∑

n=1

nH(n) , (3.4)

the latter equation is equivalent to the following infinite system of equations

H(1) = gIJ̄ΨIΨ̄J̄ , nH(n) −
n−1
∑

p=1

H(p) K(RΨ)KLH(n−p)L = 0 , n ≥ 2 . (3.5)

It is clear that the contributions H(2),H(3), . . . , can be uniquely determined, order by order

in perturbation theory, using the equations derived.

To solve (3.5), it is useful to introduce a matrix associated with the Riemann tensor

RΨ,Ψ̄ :=

(

0 (RΨ)I
J̄

(RΨ̄)Ī
J 0

)

, (RΨ)I
J̄ = (RΨ)IK gKJ̄ , (3.6)

as well as a family of building blocks

G(2k+2) := ΨTĝ−1(RΨ̄RΨ)kRΨ̄Ψ = Ψ†ǧ−1(RΨRΨ̄)kRΨΨ̄ , k = 0, 1, 2, . . .

G(2k+1) := ΨTĝ−1(RΨ̄RΨ)kΨ̄ = Ψ†ǧ−1(RΨRΨ̄)kΨ , k = 0, 1, 2, . . . . (3.7)

Their partial derivatives can be read off from (2.8)

G(2k+2) I := (2k + 2)ĝ−1(RΨ̄RΨ)kRΨ̄Ψ = (2k + 2)ΨTĝ−1(RΨ̄RΨ)kRΨ̄ ,

G(2k+1) I := (2k + 1)ĝ−1(RΨ̄RΨ)kΨ̄ = (2k + 1)Ψ†ĝ−1(RΨRΨ̄)k . (3.8)

– 5 –
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Now, if one introduces an ansatz

H(n) = cn G(n) , n ≥ 2 (3.9)

with cn numerical coefficients, the equations (3.5) turn into the following system of

quadratic algebraic equations:

n cn −
n−1
∑

p=1

p(n − p) cpcn−p = 0 , c1 = 1 . (3.10)

The algebraic equations (3.10) are universal and independent of the symmetric space

M chosen. Therefore, their solution can be deduced by considering any useful choice of

M, for which H is known, say the projective space CPn first considered by Calabi [15].

This observation immediately leads to the solution

H(Φ, Φ̄,Ψ, Ψ̄) =
1

2
ΨTg−1F

(

− RΨ,Ψ̄

)

Ψ , Ψ :=

(

ΨI

Ψ̄Ī

)

, (3.11)

where

F(x) =
1

x

{√
1 + 4x − 1 − ln

1 +
√

1 + 4x

2

}

, F(0) = 1 . (3.12)

Eq. (3.11) is the main result of this work.

To write down the supersymmetry transformation (3.2) explicitly, we need to compute

HI and its conjugate. Direct calculations give
(

HI

HĪ

)

= −1

2
g−1

√

l1 − 4RΨ,Ψ̄ − l1

RΨ,Ψ̄

(

ΨI

Ψ̄Ī

)

. (3.13)

Our derivation of the hyperkähler potential for T ∗M,

K(Φ, Φ̄) +
1

2
ΨTg−1F

(

− RΨ,Ψ̄

)

Ψ , (3.14)

was based on the considerations of extended supersymmetry. In the mathematical litera-

ture, there exists a different representation for H(Φ, Φ̄,Ψ, Ψ̄) [16]:

H(Φ, Φ̄,Ψ, Ψ̄) = Ψ†ǧ−1F
(

− RΨ,Ψ̄

)

Ψ , (RΨ,Ψ̄)I
J :=

1

2
RI

JK̄LΨLΨ̄K̄ . (3.15)

This unified formula was derived by Biquard and Gauduchon by using purely algebraic

means involving the root theory for Hermitian symmetric spaces. It should be pointed out

that the operator RΨ,Ψ̄ above is related to RΣ,Σ̄ appearing in (2.9). It is worth expecting

that similar algebraic arguments can be used to prove the validity of (2.9) for any Hermitian

symmetric space.

The N = 2 supersymmetric model on T ∗M constructed above can be generalized to

include a superpotential consistent with N = 2 supersymmetry. In accordance with the

analysis in [17] (see also [18]), the superpotential is

eiσ

∫

d2θ ΨI XI(Φ) + c.c. , (3.16)

where eiσ is a constant phase factor, and XI(Φ) a holomorphic Killing vector of the base

Kähler manifold M. Similar results hold in five space-time dimensions [17, 18].

– 6 –
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A. Kähler normal coordinates

Let us recall the important notion of a canonical coordinate system for a Kähler manifold,

that was introduced by Bochner in 1947 [13] and later used by Calabi in the 1950s [14].4 In

a neighborhood of any point p of the Kähler manifold M, holomorphic reparametrizations

and Kähler transformations can be used to choose a coordinate system, with origin at

p ∈ M, in which the Kähler potential takes the form:

K(φ, φ̄) = gIJ̄ |φI φ̄J̄ +

∞
∑

m,n≥2

K(m,n)(φ, φ̄) ,

K(m,n)(φ, φ̄) :=
1

m!n!
KI1···ImJ̄1···J̄n

|φI1 . . . φImφ̄J̄1 . . . φ̄J̄n . (A.1)

In such a coordinate system, there still remains the freedom to perform linear holomorphic

reparametrizations which can be used to set the metric at the origin to be gIJ̄ = δIJ̄ .

The Taylor coefficients in (A.1), KI1···ImJ̄1···J̄n
|, turn out to be tensor functions of the

Kähler metric, the Riemann curvature RIJ̄KL̄ and its covariant derivatives, all of which

are evaluated at the origin. In the physics literature, Bochner’s canonical coordinates are

often called “Kähler normal coordinates” [22]. We follow this terminology. Kähler normal

coordinates are very useful for various considerations, in particular in the context of the

so-called Bergman kernel [23].

In the case of symmetric spaces,

∇LRI1J̄1I2J̄2
= ∇̄L̄RI1J̄1I2J̄2

= 0 =⇒ K(m,n) = 0 , m 6= n . (A.2)

The condition of covariant constancy can be rewritten as

∇̄L̄RI1
J1

I2
J2 = ∂̄L̄RI1

J1
I2

J2 = 0 , (A.3)

and therefore RI1
J1

I2
J2 is φ̄-independent. Since

RI1J̄1I2J̄2
= KI1I2J̄1J̄2

− gMN̄ΓM
I1I2

Γ̄N̄
J̄1J̄2

= KI1I2J̄1J̄2
− gM̄NKI1I2M̄KNJ̄1J̄2

, (A.4)

and terms in the Taylor series for the expression on the right involve equal numbers of φ

and φ̄, we conclude5

RI1
J1

I2
J2 = RI1

J1
I2

J2| = const . (A.5)

Then we can write

ΓM
I1I2,J̄

= RI1
M

I2J̄ = RI1
M

I2
NgNJ̄ = RI1

M
I2

NKNJ̄ , (A.6)

4This coordinate system was re-discovered by supersymmetry practitioners in the 1980s under the name

normal gauge [19 – 21].
5For the Hermitian symmetric space M = G/H , the constant tensor RI1

J1
I2

J2 can be related to the

structure constants of G.

– 7 –



J
H
E
P
1
2
(
2
0
0
8
)
0
7
2

and hence

ΓM
I1I2

= RI1
M

I2
N KN . (A.7)

Contracting both sides of this equation with the metric, gMQ̄, one can arrive at the equation

KI1I2 =
1

2
RI1

M
I2

N KMKN . (A.8)

Equation (A.8) is highly important, since it makes it possible to uniquely restore

K(φ, φ̄) provided its functional form, eqs. (A.1) and (A.2), is taken into account. In

particular, using eq. (A.8) allows one to deduce the following alternative equation:

gIJ̄ |φI +
1

2
φKφLRKJ̄L

I |KI = KJ̄ . (A.9)

For the Kähler potential, one obtains the following closed form expression:

K
(

φ, φ̄
)

= −1

2
φTg|

ln
(

l1 − Rφ,φ̄

)

Rφ,φ̄

φ , φ :=

(

φI

φ̄Ī

)

. (A.10)

Here Rφ,φ̄ is obtained from (2.2) by replacing Σ → φ and RK
I
LJ̄ → RK

I
L

J gJJ̄ |.
We should emphasize that our derivation above only relied on eq. (A.2).
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